skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ijaz, Amna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Fairbanks, Alaska, is a sub-Arctic city that frequently suffers from the non-attainment of national air quality standards in the wintertime due to the coincidence of weak atmospheric dispersion and increased local emissions. As part of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) campaign, we deployed a Chemical Analysis of Aerosol Online (CHARON) inlet coupled with a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF MS) and an Aerodyne high-resolution aerosol mass spectrometer (AMS) to measure organic aerosol (OA) and non-refractory submicron particulate matter (NR-PM1), respectively. We deployed a positive matrix factorization (PMF) analysis for the source identification of NR-PM1. The AMS analysis identified three primary factors: biomass burning, hydrocarbon-like, and cooking factors, which together accounted for 28 %, 38 %, and 11 % of the total OA, respectively. Additionally, a combined organic and inorganic PMF analysis revealed two further factors: one enriched in nitrates and another rich in sulfates of organic and inorganic origin. The PTRCHARON factorization could identify four primary sources from residential heating: one from oil combustion and three from wood combustion, categorized as low temperature, softwood, and hardwood. Collectively, all residential heating factors accounted for 79 % of the total OA. Cooking and road transport were also recognized as primary contributors to the overall emission profile provided by PTRCHARON. All PMF analyses could apportion a single oxygenated secondary organic factor. These results demonstrate the complementarity of the two instruments and their ability to describe the complex chemical composition of PM1 and related sources. This work further demonstrates the capability of PTRCHARON to provide both qualitative and quantitative information, offering a comprehensive understanding of the OA sources. Such insights into the sources of submicron aerosols can ultimately assist environmental regulators and citizens in improving the air quality in Fairbanks and in rapidly urbanizing regional sub-Arctic areas. 
    more » « less
  2. Free, publicly-accessible full text available June 16, 2026
  3. Abstract We investigated how various sources contributed to observations of over 40 trace gas and particulate species in a typical Fairbanks residential neighborhood during the Alaskan Layered Pollution and Chemical Analysis campaign in January–February 2022. Aromatic volatile organic compounds (VOCs) accounted for ∼50% of measured VOCs (molar ratio), while methanol and ethanol accounted for ∼34%. The total wintertime VOC burden and contribution from aromatics were much higher than other US urban areas. Based on diel cycles and positive matrix factorization (PMF) analyses, we find traffic was the largest source of NO, CO, black carbon, and aromatic VOCs. Formic and acetic acid, hydroxyacetone, furanoids, and other VOCs were primarily attributed to residential wood combustion (RWC). Formaldehyde was one of several VOCs featuring significant contributions from multiple sources: RWC (∼35%), aging (∼30%), traffic (∼21%), and heating oil combustion (HO, ∼14%). PMF solutions assigned primary fine particulate matter to RWC (10%–30%), traffic (25%–40%), and HO (30%–60%), the latter likely reflecting high sulfur emissions from older furnaces and fast secondary chemistry. Despite cold and dark conditions, secondary processes impacted many trace gas and particle species' budget by ±10%–20% and more in some cases. Transport of O3‐rich regional air into Fairbanks contributed to aging, specifically NO3radical formation. This work highlights a long‐term trend observed in Fairbanks: increasing traffic and decreasing RWC relative contributions as total pollution decreases. Fairbanks exports a relatively fresh pollutant mixture to the regional arctic, the fate of which warrants future study. 
    more » « less
  4. Abstract High‐resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive‐ion and negative‐ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative‐ and positive‐ion modes over a wide range ofm/zvalues and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance‐weighted average indices (H/C, O/C, aromaticity, andm/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments. 
    more » « less